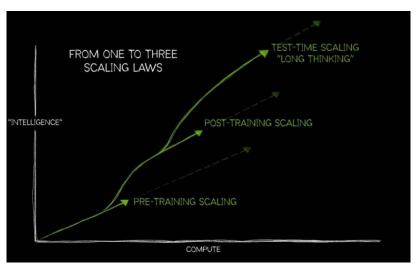


Kevin Dalton, Doris Mai, Luis Aldama October 21st, 2025

Contemporary Machine Learning

Stargate Data Center (*OpenAI)

- 10 gigawatts
- \$500 billion

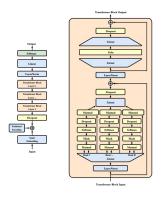


Inference Time Compute (*NVIDIA)

- Generative models
- Frozen weights

Comparison of Model Philosophies

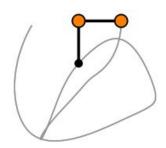
Pre-Trained



Foundation Models

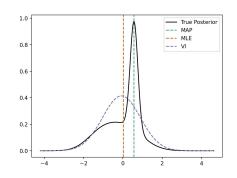
- Large ML models are
- Scalable at inference time
- Data hungry
- Not interpretable

Re-Trained



Physical Models (*Jousef Murad)

- Very interpretable
- May include local parameters
- May require resources to scale



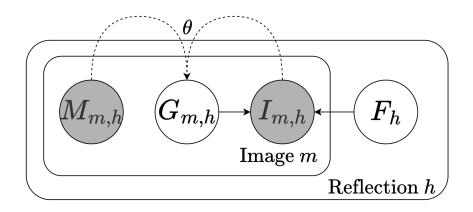
Stochastic Variational Inference

- Use DNNs and Bayesian inference
- Scalable and
- Interpretable
- Can integrate physical models

Conventional Physical Models

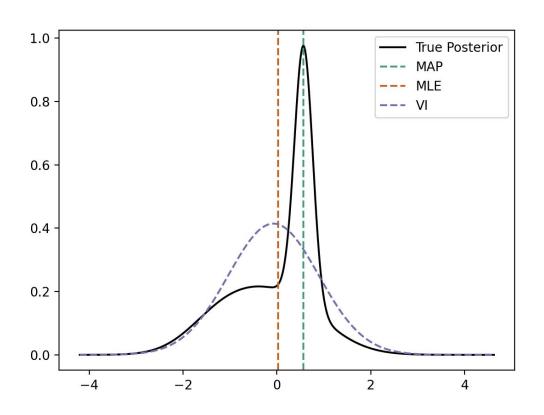
- Physical models often built on inherently local parameters that prevents scalability
- Large ML models are scalable at inference time but data hungry
- ML parameterized VI enables both physical interpretability and scalability

Variational Inference: Interpretable Model of Data Generation



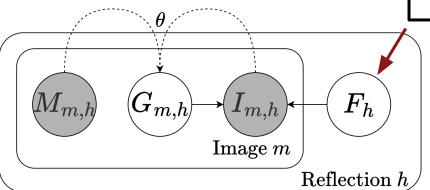
- I: observed scattering intensities
- **F**: Fourier coefficients of the electron density
- **G**: Systematic error in measurements
- G is the output of a neural network parameterized by θ
- M: is the metadata about each reflection observation. I
- F and θ are jointly estimated by optimizing the ELBO

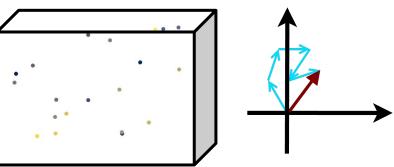
Variational Inference: Rigorous Uncertainty Estimates



Variational Inference: Natural Ways to Include Prior Info

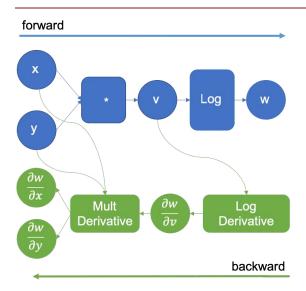
- Diffraction intensities
- Atomic structures
- Molecular sequences
- ...

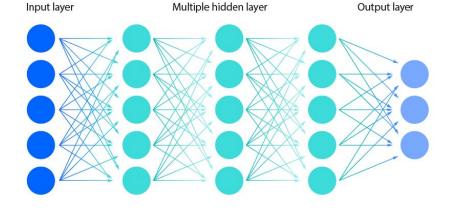




Random atom model (Wilson distribution)

Variational Inference: Compatible with Modern ML





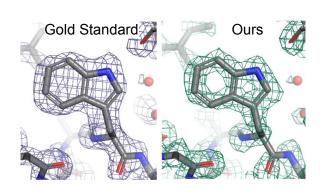
Autograd (*PyTorch)

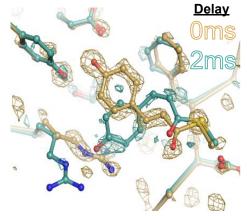
- Computes gradients of distributions
- Easily add physics-based functions

Deep Neural Networks (*IBM)

- Black box learnable functions
- Implicit representations
- Many architectures CNNs, MLPs, Transformers, etc

Variational Inference: Flexibly Process Diverse Data Sources



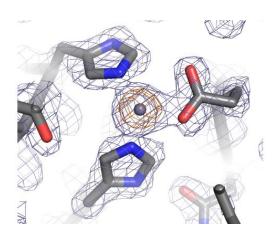


Conventional Diffraction

Ab initio phasing of hen egg white lysozyme from native sulfur

Time-Resolved Laue

Time-resolved, polychromatic diffraction of photoactive yellow protein



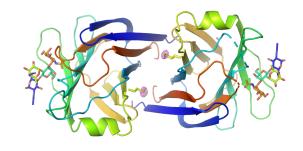
Serial-Femtosecond

Serial crystallography of a zinc metalloprotease from LCLS

Variational Inference: Scale to Large Data Sets

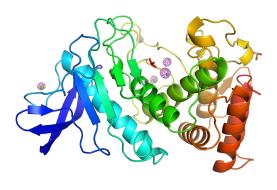
CXIDB-61

26,583 Images 1.4 Å Resolution Cutoff SACLA



CXIDB-62

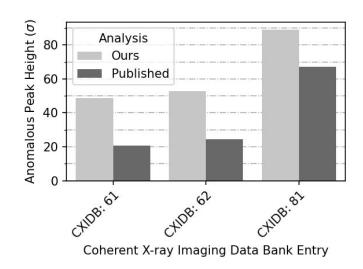
133,242 Images 1.5 Å Resolution Cutoff SACLA



CXIDB-81

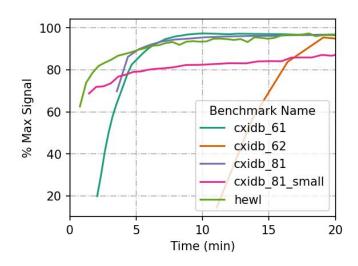
164,639 Images 1.8 Å Resolution Cutoff LCLS

Variational Inference: Scale to Large Data Sets



Anomalous Peak Heights

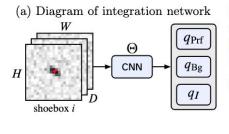
- State of the art results
- No hyperparameter tuning



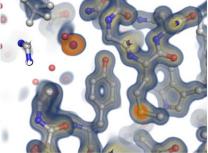
Training Time

- Training converges in < 20 min for all datasets
- Single A100 GPU

Variational Inference: Easy to Extend



(b) electron density map produced by differentiable integrator



(c) Iodide anomalous	peak	heights	(σ)
----------------------	------	---------	------------

Epoch	204	205	206
	IOD	IOD	IOD
epoch 1	30.23	13.19	29.15
epoch 3	31.82	13.90	30.24
epoch 5	33.16	14.58	30.65
epoch 7	33.77	15.10	31.14
epoch 9	32.33	14.42	30.03
epoch 11	34.09	15.26	30.88
epoch 13	32.02	14.02	30.10
Ref. (DIALS)	32.68	14.75	29.69

Luis Aldama

Doeke Hekstra

Estimating Photon Flux with Variational Inference

- Use VI to estimate photons scattered to Bragg peaks
- Amortized intensity, background, and profile
- SOTA performance on hen egg white lysozyme dataset

Acknowledgements

Minhuan Li

Luis Aldama

Flavia Giehr

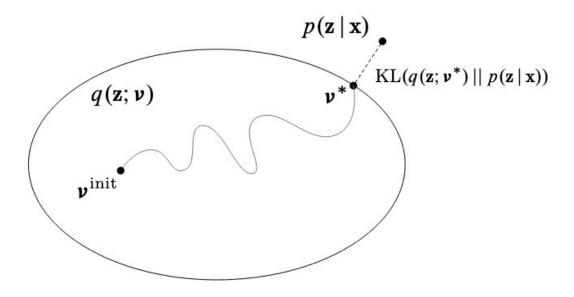
Variational Inference

VI Algorithm

- VI turns inference into optimization.
- Posit a variational family of distributions over the latent variables, q(z; v)
- Fit the variational parameters, v, to be close (in KL) to the exact posterior.

- Provides an interpretable statistical model of data generation.
- Natural ways to incorporate prior information.
- Rigorous uncertainty estimates.
- Scalable to large datasets using stochastic training.
- Compatible with DNNs and AutoDiff.

Variational Inference

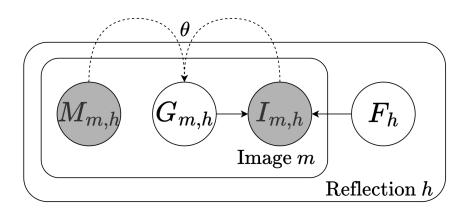


VI Algorithm

- VI turns inference into optimization.
- Posit a variational family of distributions over the latent variables, q(z; v)
- Fit the variational parameters, v, to be close (in KL) to the exact posterior.

^{*}David Blei, Rajesh Ranganath, Shakir Mohamed. NeurlPS 2016 Tutorial.

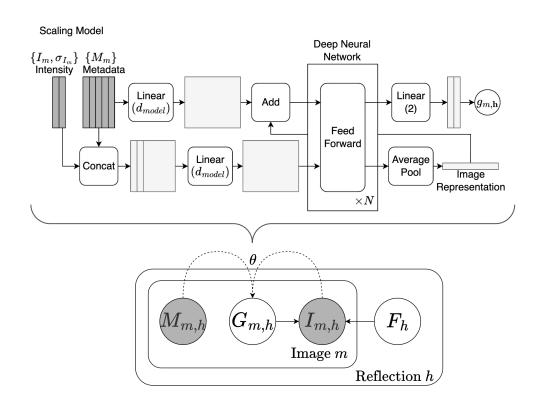
A Statistical Model of Diffraction



Algorithm

- Estimate random variables
 - F: Fourier coefficients of the electron density
 - G: Systematic error in measurements
- **G** is amortized by θ , the parameters of a neural network
 - Predict systematic errors from metadata
- Learn F and θ to maximize the evidence lower bound (ELBO)

VI Can Scale to Large Data Sets



Algorithm

- Amortize systematic error,G, using a simple CNN
 - Permutation invariant
 - Residual feed forward network